Rolo T.D.S., Ershov A., Van De Kamp T., Baumbach T.

in Proceedings of the National Academy of Sciences of the United States of America, 111 (2014) 3921-3926. DOI:10.1073/pnas.1308650111

Abstract

Scientific cinematography using ultrafast optical imaging is a common tool to study motion. In opaque organisms or structures, X-ray radiography captures sequences of 2D projections to visualize morphological dynamics, but for many applications full fourdimensional (4D) spatiotemporal information is highly desirable. We introduce in vivo X-ray cine-tomography as a 4D imaging technique developed to study real-time dynamics in small living organisms with micrometer spatial resolution and subsecond time resolution. The method enables insights into the physiology of small animals by tracking the 4D morphological dynamics of minute anatomical features as demonstrated in this work by the analysis of fast-moving screw-and-nut-type weevil hip joints. The presented method can be applied to a broad range of biological specimens and biotechnological processes.

18 thoughts on “In vivo X-ray cine-tomography for tracking morphological dynamics

  1. Koch M.et al.: Tentorial mobility in centipedes (Chilopoda) revisited: 3D reconstruction of the mandibulo-tentorial musculature of Geophilomorpha in ZooKeys, 2015 (2015) 243-267.

Comments are closed.