Caselle M., Brosi M., Chilingaryan S., Dritschler T., Judin V., Kopmann A., Mueller A.-S., Raasch J., Smale N.J., Steinmann J., Vogelgesang M., Wuensch S., Siegel M., Weber M.

in 2014 19th IEEE-NPSS Real Time Conference, RT 2014 – Conference Records (2015), 7097535. DOI:10.1109/RTC.2014.7097535

Abstract

© 2014 IEEE. Since a few years Coherent Synchrotron Radiation (CSR) generated by short electron bunches is provided at the ANKA synchrotron light source. To study the THz emission characteristics over multiple revolutions superconducting YBa2Cu3O7-δ (YBCO) thin-film detectors can be used. The intrinsic response time of YBCO thin films is in the order of a few picoseconds only. For fast and continuous sampling of this individual ultra-short terahertz pulses a novel digitizer system has been developed with programmable sampling times in the range of 3 to 100 ps. The Real-time system is based on a heterogeneous FPGA and GPU architecture for on-line pulse reconstruction and evaluations of the peak amplitudes and the time between consecutive bunches. The data is transmitted to a GPU computing node by a fast data transfer link based on a bus master DMA engine connected to PCI express endpoint logic. This new DMA architecture ensures a continuous high data throughput of up to 4 GByte/s. The presented DAQ system is able to resolve the bursting behavior of single bunches even in a multi-bunch environment and to study the bunch-bunch-interactions.

Amsbaugh, J.F. et al.

in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 778, 1 April 2015, Pages 40-60

Abstract

The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation. © 2015 Elsevier B.V. All rights reserved.

Schultze, Felix

Master thesis, Faculty of Computer Science, Karlsruhe Institute of Technology, 2015.

Abstract

An ever increasing number of large tomographic images is recorded at synchrotron facilities world wide. Due to the drastic increase of data volumes, there is a recent trend to provide data analysis services at the facilities as well. The ASTOR project aims to realize a cloud-based infrastructure for remote data analysis and visualization of tomographic data. A key component is a web-based data browser to select data sets and request a virtual machine for analysis of this data. One of the challenges is to provide a fast preview of 3D volumes but also 3D sequences. Since a standard data sets exceed 10 gigabytes, standard visualization techniques are not feasible and new data reduction techniques have to be developed.

 

First assessor: Prof. Dr.-Ing. Carsten Dachsbacher
Second assessor: Dr. Suren Chilingaryan

Supervised by  Dr. Andreas Kopmann

Smith J.L., Palermo N.A., Theobald J.C., Wells J.D., Heethoff M.

in Journal of Insect Science, 15 (2015). DOI:10.1093/jisesa/iev114

Abstract

© The Author 2015. Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions.

Heethoff M., Rall B.C.

in Chemoecology, 25 (2015) 53-61. DOI:10.1007/s00049-014-0184-z

Abstract

© 2015, Springer Basel. Morphological and chemical defences are widespread anti-predator mechanisms in most domains of life, and play an important role in understanding predator–prey interactions. Classical concepts of dynamical protection (‘inducible defence’) include the morphological changes in certain crustaceans or the production of chemicals in many plants. Permanently stored defensive secretions are, to our knowledge, ignored in food web ecology. We show that this kind of chemical defence is highly dynamic and may loose its effect over time (‘reducible defence’). Combining experimental and theoretical approaches, we show that chemical defence also changes the time budget of predators and decreases the strength of the functional response. However, this may be counteracted by increasing predator density—an effect we call ‘apparent facilitation’. The interplay of ‘reducible defence’ and ‘apparent facilitation’ may substantially contribute to stability in terrestrial ecosystems.

Schmelzle S., Norton R.A., Heethoff M.

in Zoologischer Anzeiger, 254 (2015) 27-40. DOI:10.1016/j.jcz.2014.09.002

Abstract

© 2014 Elsevier GmbH. The most complex mechanical defense of oribatid mites is ptychoidy, in which the animals can retract their legs and gnathosoma into the idiosoma and encapsulate by deflecting the prodorsum. Since Acari lack most antagonistic musculature, extension of appendages is facilitated through hemolymph pressure that in mites mostly is generated by dorso-ventral compression of the opisthosoma. The hardened notogaster of box mites requires a different system of pressure generation that is also able to accommodate huge hemolymph movement accompanying ptychoidy. We compared the functional morphology of ptychoidy in one model species from each of the two ptyctime superfamilies, Euphthiracaroidea and Phthiracaroidea, using synchrotron X-ray microtomography and high-speed videography. We show that the two groups evolved very different functional modes of hydrostatic pressure control. While euphthiracaroids employ a lateral compression of the notogaster using all muscles of the opisthosomal compressor system, phthiracaroids employ a dorsoventral compression generated by only the notogaster lateral compressor and additionally the postanal muscle; these retract the temporarily unified ventral plates into the idiosoma, revealing the poam as an integral part of the opisthosomal compressor system in this group. The primitive mode of operation for generating hemolymph pressure in the Ptyctima probably was lateral compression, as molecular studies indicate that Phthiracaroidea evolved within Euphthiracaroidea. In this hypothesis, dorsoventral compression evolved secondarily in phthiracaroid mites, but whether the immediate ancestors of Ptyctima used lateral or dorsoventral compression remains to be determined.

Steinmann J.L., Brosi M., Brundermann E., Caselle M., Hertle E., Hiller N., Kehrer B., Muller A.-S., Schonfeldt P., Schuh M., Schutze P., Schwarz M., Hesler J.

in 6th International Particle Accelerator Conference, IPAC 2015 (2015) 1509-1511.

Abstract

Copyright © 2015 CC-BY-3.0 and by the respective authors. Interferometry is the quasi-standard for spectral measurements in the THz- and IR-range. The frequency resolution, however, is limited by the travel range of the interferometer mirrors. Therefore, a resolution in the low megahertz range would require interferometer arms of about 100 m. As an alternative, heterodyne measurements provide a resolution in the Hertz range, an improvement of 6 orders of magnitude. Here we present measurements done at ANKA with a VDI WR3.4SAX, a mixer that can be tuned to frequencies from 220 GHz to 330 GHz and we show how the bunch filling pattern influences the amplitude of specific frequencies.

Yang X., Hofmann R., Dapp R., Van De Kamp T., Dos Santos Rolo T.T., Xiao X., Moosmann J., Kashef J., Stotzka R.

in Optics Express, 23 (2015) 5368-5387. DOI:10.1364/OE.23.005368

Abstract

© 2015 Optical Society of America. High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.

van de Kamp T., Cecilia A., dos Santos Rolo T., Vagovic P., Baumbach T., Riedel A.

in Arthropod Structure and Development, 44 (2015) 509-523. DOI:10.1016/j.asd.2015.07.004

Abstract

© 2015 Elsevier Ltd.The thorax morphology, especially the muscles and the tracheal system of three flightless species of Cryptorhynchinae is examined by digital 3D reconstructions based on synchrotron X-ray microtomography and compared to other Curculionidae. Wings, metanepisternites, and muscles functional in flight are fully reduced in the species examined: Kyklioacalles roboris (Curtis), Trigonopterus scharfi Riedel and Trigonopterus vandekampi Riedel. All three share the same set of thoracic muscles, but differences exist in the shape and size of muscles. Both Trigonopterus species examined have a conspicuous fan-shaped branch of Musculus mesosterni primus contracting pro- and mesothorax, interpreted as an adaption to their thanatosis defense strategy. Trigonopterus vandekampi furthermore shows a marked increase in the size of two metacoxal muscles, which may be functional in this species’ thanatosis blocking mechanisms. The metathoracic spiracle of all Trigonopterus species is located at the side of the metaventrite externally and not in the subelytral space as in other beetles. It is hypothesized that this translocation was triggered by the need to improve oxygen supply during thanatosis, when both the mesothoracic spiracle and the subelytral cavity are tightly sealed from the outside.