Blank T., Pfistner P., Leyrer B., Caselle M., Simons C., Schmidt C.J., Weber M.
in 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference, ICEP-IAAC 2018 (2018) 288-292. DOI:10.23919/ICEP.2018.8374306
Abstract
© 2018 Japan Institute of Electronics Packaging. The Compressed Baryonic Matter Experiment (CBM) investigates highly compressed nuclear matter, utilizing a Silicon Tracking System comprising 896 silicon sensors modules packed in eight layers with an overall area of four sqm. Each module consists of one sensor, 16 Read-Out Chips and 16 double-layer micro flex-cables, which are connected to the top and bottom side of the sensor. The cables are up to 50 cm long. They carry 128 signal traces on two layers at a pitch of 100 μm and a line-width of 25 μm. The layers are separated by a meshed core to reduce the cable capacity to 0.44 pF/cm. The cables are bonded onto one sensor by a pick and place flip-chip machine. The interconnection is realized by gold stud-bumps on the silicon and SAC solder bumps on the cable. The status of the sensor module and cable production process are presented.