Caselle M., Rota L., Kopmann A., Chilingaryan S.A., Mahaveer Patil M., Wang W., Brundermann E., Funkner S., Nasse M., Niehues G., Norbert Balzer M., Weber M., Muller A.S., Bielawski S.

in Proceedings of SPIE – The International Society for Optical Engineering, 10937 (2019), 1093704. DOI:10.1117/12.2508451


© 2019 SPIE.KALYPSO is a novel detector operating at line rates above 10 Mfps. It consists of a detector board connected to FPGA based readout card for real time data processing. The detector board holds a Si or InGaAs linear array sensor, with spectral sensitivity ranging from 400 nm to 2600 nm, which is connected to a custom made front-end ASIC. A FPGA readout framework performs the real time data processing. In this contribution, we present the detector system, the readout electronics and the heterogeneous infrastructure for machine learning processing. The detector is currently in use at several synchrotron facilities for beam diagnostics as well as for single-pulse laser characterizations. Thanks to the shot-to-shot capability over long time scale, new attractive applications are open up for imaging in biological and medical research.