Haas D., Mexner W., Spangenberg T., Cecilia A., Vagovic P., Kopmann A., Balzer M., Vogelgesang M., Pasic H., Chilingaryan S.

in PCaPAC 2012 – 9th International Workshop on Personal Computers and Particle Accelerator Controls (2012) 103-105.

Abstract

X-ray imaging permits to spatially resolve the 2D and 3D structure in materials and organisms, which is crucial for the understanding of their properties. Additional temporal resolution of structure evolution gives access to dynamics of processes and allows to understand functionality of devices and organisms with the goal to optimize technological processes. Such time-resolved dynamic analysis of micro-sized structures is now possible by aid of ultrafast tomography, as being developed at the TopoTomo beamline of the synchrotron light source ANKA. At TopoTomo, the whole experimental workflow has been significantly improved in order to decrease the total duration of a tomography experiment down to the range of minutes. To meet these requirements, detectors and the computing infrastructure have been optimized, comprising a Tango-based control system for ultra fast tomography with a data throughput of several 100 MB/s. Multi-GPU based computing allows for high speed data processing by using a special reconstruction scheme. Furthermore the data management infrastructure will allow for a life cycle management of data sets accumulating several TByte/day. The final concept will also be part of the IMAGE beamline, which is going to be installed in 2013. © 2012 by the respective authors.

Birk M., Guth A., Zapf M., Balzer M., Ruiter N., Hubner M., Becker J.

in Conference on Design and Architectures for Signal and Image Processing, DASIP (2011) 67-74, 6136856. DOI:10.1109/DASIP.2011.6136856

Abstract

As today’s standard screening methods frequently fail to diagnose breast cancer before metastases have developed, earlier breast cancer diagnosis is still a major challenge. Three-dimensional ultrasound computer tomography promises high-quality images of the breast, but is currently limited by a time-consuming synthetic aperture focusing technique based image reconstruction. In this work, we investigate the acceleration of the image reconstruction by a GPU, and by the FPGAs embedded in our custom data acquisition system. We compare the obtained performance results with a recent multi-core CPU and show that both platforms are able to accelerate processing. The GPU reaches the highest performance. Furthermore, we draw conclusions in terms of applicability of the accelerated reconstructions in future clinical application and highlight general principles for speed-up on GPUs and FPGAs. © 2011 IEEE.

Birk M., Koehler S., Balzer M., Huebner M., Ruiter N.V., Becker J.

in IEEE Transactions on Nuclear Science, 58 (2011) 1647-1651, 5942184. DOI:10.1109/TNS.2011.2159017

Abstract

A three-dimensional ultrasound computer tomography (3-D USCT) system for early breast cancer diagnosis is currently being developed at Institute for Data Processing and Electronics (IPE) at Karlsruhe Institute of Technology, Karlsruhe, Germany. A field-programmable gate array (FPGA)-based data acquisition (DAQ) system is used to acquire the measurement data. Over 3.5 million data sets are recorded for each breast, resulting in 20 GB of raw data. The data is subsequently transferred to a PC for time-consuming image reconstruction, which is in the order of days. A promising approach in reducing reconstruction time is mapping further computation to the FPGAs in the DAQ system. This paper covers the investigation of FPGA-based processing for a set of signal processing algorithms. In the best suited approach, processing time per data set is approximately 50 μs, occupying less than 30% of device resources. © 2006 IEEE.

Birk M., Hagner C., Balzer M., Ruiter N.V., Hubner M., Becker J.

in International Journal of Reconfigurable Computing, 2011 (2011), 952937. DOI:10.1155/2011/952937

Abstract

As today’s standard screening methods often fail to diagnose breast cancer before metastases have developed, an earlier breast cancer diagnosis is still a major challenge. To improve this situation, we are currently developing a fully three-dimensional ultrasound computer tomography (3D USCT) system, promising high-quality volume images of the breast. For obtaining these images, a time-consuming reconstruction has to be performed. As this is currently done on a PC, parallel processing in reconfigurable hardware could accelerate both signal and image processing. In this work, we investigated the suitability of an existing data acquisition (DAQ) system for further computation tasks. The reconfiguration features of the embedded FPGAs have been exploited to enhance the systems functionality. We have adapted the DAQ system to allow for bidirectional communication and to provide an overall process control. Our results show that the studied system can be applied for data processing. Copyright © 2011 Matthias Birk et al.