Caselle M., Perez L.E.A., Balzer M., Kopmann A., Rota L., Weber M., Brosi M., Steinmann J., Brundermann E., Muller A.-S.

in Journal of Instrumentation, 12 (2017), C01040. DOI:10.1088/1748-0221/12/01/C01040


© 2017 IOP Publishing Ltd and Sissa Medialab srl. This paper presents a novel data acquisition system for continuous sampling of ultra-short pulses generated by terahertz (THz) detectors. Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE) is able to digitize pulse shapes with a sampling time down to 3 ps and pulse repetition rates up to 500 MHz. KAPTURE has been integrated as a permanent diagnostic device at ANKA and is used for investigating the emitted coherent synchrotron radiation in the THz range. A second version of KAPTURE has been developed to improve the performance and flexibility. The new version offers a better sampling accuracy for a pulse repetition rate up to 2 GHz. The higher data rate produced by the sampling system is processed in real-time by a heterogeneous FPGA and GPU architecture operating up to 6.5 GB/s continuously. Results in accelerator physics will be reported and the new design of KAPTURE be discussed.

Steinmann J.L., Blomley E., Brosi M., Brundermann E., Caselle M., Hesler J.L., Hiller N., Kehrer B., Mathis Y.-L., Nasse M.J., Raasch J., Schedler M., Schonfeldt P., Schuh M., Schwarz M., Siegel M., Smale N., Weber M., Muller A.-S.

in Physical Review Letters, 117 (2016), 174802. DOI:10.1103/PhysRevLett.117.174802


© 2016 American Physical Society. Using arbitrary periodic pulse patterns we show the enhancement of specific frequencies in a frequency comb. The envelope of a regular frequency comb originates from equally spaced, identical pulses and mimics the single pulse spectrum. We investigated spectra originating from the periodic emission of pulse trains with gaps and individual pulse heights, which are commonly observed, for example, at high-repetition-rate free electron lasers, high power lasers, and synchrotrons. The ANKA synchrotron light source was filled with defined patterns of short electron bunches generating coherent synchrotron radiation in the terahertz range. We resolved the intensities of the frequency comb around 0.258 THz using the heterodyne mixing spectroscopy with a resolution of down to 1 Hz and provide a comprehensive theoretical description. Adjusting the electron’s revolution frequency, a gapless spectrum can be recorded, improving the resolution by up to 7 and 5 orders of magnitude compared to FTIR and recent heterodyne measurements, respectively. The results imply avenues to optimize and increase the signal-to-noise ratio of specific frequencies in the emitted synchrotron radiation spectrum to enable novel ultrahigh resolution spectroscopy and metrology applications from the terahertz to the x-ray region.

Rota L., Balzer M., Caselle M., Kudella S., Weber M., Mozzanica A., Hiller N., Nasse M.J., Niehues G., Schonfeldt P., Gerth C., Steffen B., Walther S., Makowski D., Mielczarek A.

in 2016 IEEE-NPSS Real Time Conference, RT 2016 (2016), 7543157. DOI:10.1109/RTC.2016.7543157


© 2016 IEEE. We developed a fast linear array detector to improve the acquisition rate and the resolution of Electro-Optical Spectral Decoding (EOSD) experimental setups currently installed at several light sources. The system consists of a detector board, an FPGA readout board and a high-Throughput data link. InGaAs or Si sensors are used to detect near-infrared (NIR) or visible light. The data acquisition, the operation of the detector board and its synchronization with synchrotron machines are handled by the FPGA. The readout architecture is based on a high-Throughput PCI-Express data link. In this paper we describe the system and we present preliminary measurements taken at the ANKA storage ring. A line-rate of 2.7 Mlps (lines per second) has been demonstrated.